Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.764
Filtrar
1.
Sci Rep ; 14(1): 8581, 2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615036

RESUMO

Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and it is characterized by the intracellular and extracellular accumulation of α-synuclein (α-syn) and Tau, which are major components of cytosolic protein inclusions called Lewy bodies, in the brain. Currently, there is a lack of effective methods that preventing PD progression. It has been suggested that the plasminogen activation system, which is a major extracellular proteolysis system, is involved in PD pathogenesis. We investigated the functional roles of plasminogen in vitro in an okadaic acid-induced Tau hyperphosphorylation NSC34 cell model, ex vivo using brains from normal controls and methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, and in vivo in a widely used MPTP-induced PD mouse model and an α-syn overexpression mouse model. The in vitro, ex vivo and in vivo results showed that the administered plasminogen crossed the blood‒brain barrier (BBB), entered cells, and migrated to the nucleus, increased plasmin activity intracellularly, bound to α-syn through lysine binding sites, significantly promoted α-syn, Tau and TDP-43 clearance intracellularly and even intranuclearly in the brain, decreased dopaminergic neurodegeneration and increased the tyrosine hydroxylase levels in the substantia nigra and striatum, and improved motor function in PD mouse models. These findings indicate that plasminogen plays a wide range of pivotal protective roles in PD and therefore may be a promising drug candidate for PD treatment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Plasminogênio , Animais , Camundongos , alfa-Sinucleína , Modelos Animais de Doenças , Proteínas de Ligação a DNA/metabolismo , Dopamina , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Plasminogênio/metabolismo , Serina Proteases , Proteínas tau/metabolismo , Neurônios Dopaminérgicos/patologia
2.
Cancer Rep (Hoboken) ; 7(4): e2074, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627904

RESUMO

BACKGROUND: Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM: This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS: Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION: This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.


Assuntos
Neoplasias da Mama , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Transtornos dos Movimentos , Humanos , Feminino , Ciclofosfamida/efeitos adversos , Antraciclinas/uso terapêutico , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Antibióticos Antineoplásicos , Doxorrubicina/farmacologia , Neoplasias da Mama/patologia , Transtornos dos Movimentos/tratamento farmacológico
3.
PLoS Biol ; 22(4): e3002559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652714

RESUMO

Increasing evidence indicates that terminally differentiated neurons in the brain may recommit to a cell cycle-like process during neuronal aging and under disease conditions. Because of the rare existence and random localization of these cells in the brain, their molecular profiles and disease-specific heterogeneities remain unclear. Through a bioinformatics approach that allows integrated analyses of multiple single-nucleus transcriptome datasets from human brain samples, these rare cell populations were identified and selected for further characterization. Our analyses indicated that these cell cycle-related events occur predominantly in excitatory neurons and that cellular senescence is likely their immediate terminal fate. Quantitatively, the number of cell cycle re-engaging and senescent neurons decreased during the normal brain aging process, but in the context of late-onset Alzheimer's disease (AD), these cells accumulate instead. Transcriptomic profiling of these cells suggested that disease-specific differences were predominantly tied to the early stage of the senescence process, revealing that these cells presented more proinflammatory, metabolically deregulated, and pathology-associated signatures in disease-affected brains. Similarly, these general features of cell cycle re-engaging neurons were also observed in a subpopulation of dopaminergic neurons identified in the Parkinson's disease (PD)-Lewy body dementia (LBD) model. An extended analysis conducted in a mouse model of brain aging further validated the ability of this bioinformatics approach to determine the robust relationship between the cell cycle and senescence processes in neurons in this cross-species setting.


Assuntos
Envelhecimento , Doença de Alzheimer , Encéfalo , Ciclo Celular , Senescência Celular , Neurônios , Animais , Humanos , Senescência Celular/genética , Encéfalo/metabolismo , Encéfalo/patologia , Envelhecimento/fisiologia , Envelhecimento/genética , Ciclo Celular/genética , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Transcriptoma/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Perfilação da Expressão Gênica , Masculino , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Camundongos Endogâmicos C57BL , Idoso
4.
Cell Death Dis ; 15(4): 287, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654003

RESUMO

This study aimed to elucidate the role of O-GlcNAc cycling in 6-hydroxydopamine (6-OHDA)-induced Parkinson's disease (PD)-like neurodegeneration and the underlying mechanisms. We observed dose-dependent downregulation of O-GlcNAcylation, accompanied by an increase in O-GlcNAcase following 6-OHDA treatment in both mouse brain and Neuro2a cells. Interestingly, elevating O-GlcNAcylation through glucosamine (GlcN) injection provided protection against PD pathogenesis induced by 6-OHDA. At the behavioral level, GlcN mitigated motor deficits induced by 6-OHDA, as determined using the pole, cylinder, and apomorphine rotation tests. Furthermore, GlcN attenuated 6-OHDA-induced neuroinflammation and mitochondrial dysfunction. Notably, augmented O-GlcNAcylation, achieved through O-GlcNAc transferase (OGT) overexpression in mouse brain, conferred protection against 6-OHDA-induced PD pathology, encompassing neuronal cell death, motor deficits, neuroinflammation, and mitochondrial dysfunction. These collective findings suggest that O-GlcNAcylation plays a crucial role in the normal functioning of dopamine neurons. Moreover, enhancing O-GlcNAcylation through genetic and pharmacological means could effectively ameliorate neurodegeneration and motor impairment in an animal model of PD. These results propose a potential strategy for safeguarding against the deterioration of dopamine neurons implicated in PD pathogenesis.


Assuntos
Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases , Oxidopamina , Doença de Parkinson , Animais , Oxidopamina/farmacologia , Camundongos , N-Acetilglucosaminiltransferases/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Masculino , Glucosamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Acetilglucosamina/metabolismo , Acetilglucosamina/farmacologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , beta-N-Acetil-Hexosaminidases/metabolismo , Modelos Animais de Doenças
5.
Physiol Res ; 73(1): 139-155, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38466012

RESUMO

Nonsteroidal anti-inflammatory drugs are the most widely used drugs for Parkinson's disease (PD), of which ibuprofen shows positive effects in suppressing symptoms; however, the associated risk needs to be addressed in different pathological stages. Initially, we developed an initial and advanced stage of the Parkinson disease mouse model by intraperitoneal injection of MPTP (20 mg/kg; 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine) for 10 and 20 days, respectively. Subsequently, ibuprofen treatment was administered for 2 months, and a pole test, rotarod test, histology, immunohistochemistry, and western blotting were performed to determine neuronal motor function. Histological analysis for 10 days after mice were injected with MPTP showed the onset of neurodegeneration and cell aggregation, indicating the initial stages of Parkinson's disease. Advanced Parkinson's disease was marked by Lewy body formation after another 10 days of MPTP injection. Neurodegeneration reverted after ibuprofen therapy in initial Parkinson's disease but not in advanced Parkinson's disease. The pole and rotarod tests confirmed that motor activity in the initial Parkinson disease with ibuprofen treatment recovered (p<0.01). However, no improvement was observed in the ibuprofen-treated mice with advanced disease mice. Interestingly, ibuprofen treatment resulted in a significant improvement (p<0.01) in NURR1 (Nuclear receptor-related 1) expression in mice with early PD, but no substantial improvement was observed in its expression in mice with advanced PD. Our findings indicate that NURR1 exerts anti-inflammatory and neuroprotective effects. Overall, NURR1 contributed to the effects of ibuprofen on PD at different pathological stages.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/metabolismo , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/uso terapêutico , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
6.
Dev Psychobiol ; 66(2): e22469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351305

RESUMO

Autism spectrum disorder (ASD) is characterized by deficits in social interaction and communication and repetitive and restricted behaviors. Sex dimorphism in the brain, including midbrain dopaminergic circuits, can explain differences in social behavior impairment and stereotypic behaviors between male and female individuals with ASD. These abnormal patterns may be due to alterations in dopamine synthesis in the ventral tegmental area (VTA) and substantia nigra (SN). We used an autism-like mouse model by prenatal valproic acid (VPA) exposure. CD1 pregnant female mice were injected with 500 mg/kg VPA or 0.9% NaCl as a vehicle on gestational day 12.5. In the offspring, on postnatal day 31, we examined the social and repetitive behaviors and the number of tyrosine hydroxylase (TH)-positive cells in VTA and SN by sex. Male VPA mice showed impaired social behavior and increased repetitive behaviors when compared to male vehicles. In females, we did not find statistically significant differences in social or repetitive behaviors between the groups. Male VPA mice had fewer TH+ cells in the SN than control-vehicle mice. Interestingly, no cellular changes were observed between females. This study supports the notion that sex dimorphism of certain brain regions is involved in the etiopathogenesis and clinical presentation of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Camundongos , Feminino , Masculino , Animais , Humanos , Ácido Valproico/farmacologia , Caracteres Sexuais , Neurônios Dopaminérgicos/patologia , Comportamento Social , Substância Negra/patologia , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/patologia , Comportamento Animal/fisiologia
7.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339038

RESUMO

Parkinson's disease (PD) is associated with various deficits in sensing and responding to reductions in oxygen availability (hypoxia). Here we summarize the evidence pointing to a central role of hypoxia in PD, discuss the relation of hypoxia and oxygen dependence with pathological hallmarks of PD, including mitochondrial dysfunction, dopaminergic vulnerability, and alpha-synuclein-related pathology, and highlight the link with cellular and systemic oxygen sensing. We describe cases suggesting that hypoxia may trigger Parkinsonian symptoms but also emphasize that the endogenous systems that protect from hypoxia can be harnessed to protect from PD. Finally, we provide examples of preclinical and clinical research substantiating this potential.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína , Transtornos Parkinsonianos/patologia , Neurônios Dopaminérgicos/patologia , Hipóxia/patologia , Oxigênio
8.
Exp Neurol ; 375: 114724, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365133

RESUMO

Increasing evidence has shown that mitochondrial dysfunction and iron accumulation contribute to the pathogenesis of Parkinson's disease (PD). Nedd4 family interacting protein 1 (Ndfip1) is an adaptor protein of the Nedd4 E3 ubiquitin ligases. We have previously reported that Ndfip1 showed a neuroprotective effect in cell models of PD. However, whether Ndfip1 could protect dopaminergic neurons in PD animal models in vivo and the possible mechanisms are not known. Here, our results showed that the expression of Ndfip1 decreased in the substantia nigra (SN) of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD mouse model. Overexpression of Ndfip1 could improve MPTP-induced motor dysfunction significantly and antagonize the loss of dopaminergic neurons in the SN of MPTP-induced mice. Further study showed that overexpression of Ndfip1 might protect against MPTP-induced neurotoxicity through regulation of voltage-dependent anion-selective channel (VDAC). In addition, we observed the downregulation of Ndfip1 and upregulation of VDAC1/2 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced SH-SY5Y cells. Furthermore, high expression of Ndfip1 in SH-SY5Y cells inhibited MPP+-induced increase of VDAC1/2 and restored MPP+-induced mitochondrial dysfunction. Furthermore, Ndfip1 prevented MPP+-induced increase in the expression of long-chain acyl-CoA synthetase 4 (ACSL4), suggesting the possible role of Ndfip1 in regulating ferroptosis. Our results provide new evidence for the neuroprotective effect of Ndfip1 on dopaminergic neurons in PD animal models and provide promising targets for the treatment of iron-related diseases, including PD.


Assuntos
Ferroptose , Intoxicação por MPTP , Doenças Mitocondriais , Neuroblastoma , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/patologia
9.
J Neuroinflammation ; 21(1): 54, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383421

RESUMO

Parkinson's disease (PD) is a common age-related neurodegenerative disorder characterized by the aggregation of α-Synuclein (αSYN) building up intraneuronal inclusions termed Lewy pathology. Mounting evidence suggests that neuron-released αSYN aggregates could be central to microglial activation, which in turn mounts and orchestrates neuroinflammatory processes potentially harmful to neurons. Therefore, understanding the mechanisms that drive microglial cell activation, polarization and function in PD might have important therapeutic implications. Here, using primary microglia, we investigated the inflammatory potential of pure αSYN fibrils derived from PD patients. We further explored and characterized microglial cell responses to a chronic-type inflammatory stimulation combining PD patient-derived αSYN fibrils (FPD), Tumor necrosis factor-α (TNFα) and prostaglandin E2 (PGE2) (TPFPD). We showed that FPD hold stronger inflammatory potency than pure αSYN fibrils generated de novo. When combined with TNFα and PGE2, FPD polarizes microglia toward a particular functional phenotype departing from FPD-treated cells and featuring lower inflammatory cytokine and higher glutamate release. Whereas metabolomic studies showed that TPFPD-exposed microglia were closely related to classically activated M1 proinflammatory cells, notably with similar tricarboxylic acid cycle disruption, transcriptomic analysis revealed that TPFPD-activated microglia assume a unique molecular signature highlighting upregulation of genes involved in glutathione and iron metabolisms. In particular, TPFPD-specific upregulation of Slc7a11 (which encodes the cystine-glutamate antiporter xCT) was consistent with the increased glutamate response and cytotoxic activity of these cells toward midbrain dopaminergic neurons in vitro. Together, these data further extend the structure-pathological relationship of αSYN fibrillar polymorphs to their innate immune properties and demonstrate that PD-derived αSYN fibrils, TNFα and PGE2 act in concert to drive microglial cell activation toward a specific and highly neurotoxic chronic-type inflammatory phenotype characterized by robust glutamate release and iron retention.


Assuntos
Síndromes Neurotóxicas , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Microglia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sinais (Psicologia) , Inflamação/metabolismo , Neurônios Dopaminérgicos/patologia , Síndromes Neurotóxicas/metabolismo , Glutamatos/metabolismo , Ferro/metabolismo
10.
Environ Toxicol ; 39(3): 1874-1888, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189626

RESUMO

Paraquat (PQ), is characterized by neurotoxicity, which increases the potential risk of Parkinson's disease (PD) exposure in the long-term and low doses. Triggering microglia activation and neuroinflammation is deemed an early event resulting in PD. However, the underlying pathogenesis of PD by PQ is not clear yet. In this article, C57BL/6J mice treated with PQ could successfully act out Parkinson-like. In addition, we observed the fluorescence intensity enhancement of Iba-1 activated microglia with released pro-inflammatory, all ahead of both the damage of dopaminergic neurons in the substantia nigra and corpus striatum of the brain. Surprisingly, the injection of minocycline before PQ for many hours not only can effectively improve the neurobehavioral symptoms of mice but inhibit the activation of microglia and the release of pro-inflammatory substances, even controlling the gradual damage and loss of neurons. A further mechanism of minocycline hampered the expression levels of key signaling proteins PI3K, PDK1, p-AKT, and CD11b (the receptor of microglia membrane recognition), while a large number of inflammatory factors. Our results suggested that the CD11b/PI3K/NOX2 pathway may be a clue that microglia-mediated inflammatory responses and neuronal damage in a PQ-induced abnormal behavior Parkinson-like mouse.


Assuntos
Paraquat , Doença de Parkinson , Animais , Camundongos , Paraquat/toxicidade , Microglia , Minociclina/metabolismo , Minociclina/farmacologia , Camundongos Endogâmicos C57BL , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Fosfatidilinositol 3-Quinases/metabolismo
11.
Biomed Pharmacother ; 171: 116123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211424

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characterized by dopaminergic neuron death in the substantia nigra, leading to motor dysfunction. Autophagy dysregulation has been implicated in PD pathogenesis. This study explores the role of miR-214-3p in PD, focusing on its impact on autophagy and dopaminergic neuron viability. Using in vitro and in vivo models, we demonstrate that miR-214-3p inhibits autophagy and promotes dopaminergic neuron apoptosis. Behavioral assessments and molecular analyses reveal exacerbation of PD symptoms upon miR-214-3p overexpression. Furthermore, mechanistic investigations identify ATG3 as a target, shedding light on miR-214-3p's regulatory role in autophagy. These findings enhance our understanding of PD pathogenesis and propose miR-214-3p as a potential biomarker and therapeutic target for modulating autophagy and neuronal survival in PD.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , Animais , Camundongos , Doença de Parkinson/patologia , Substância Negra/patologia , Apoptose , Autofagia , Neurônios Dopaminérgicos/patologia , Camundongos Endogâmicos C57BL
12.
Exp Neurol ; 374: 114704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281587

RESUMO

The clinical manifestation of Parkinson's disease (PD) appears when neurodegeneration is already advanced, compromising the efficacy of disease-modifying treatment approaches. Biomarkers to identify the early stages of PD are therefore of paramount importance for the advancement of the therapy of PD. In the present study, by using a mouse model of PD obtained by subchronic treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and the clearance inhibitor probenecid (MPTPp), we identified prodromal markers of PD by combining in vivo positron emission tomography (PET) imaging and ex vivo immunohistochemistry. Longitudinal PET imaging of the dopamine transporter (DAT) by [18F]-N-(3-fluoropropyl)-2ß-carboxymethoxy-3ß-(4-iodophenyl) nortropane ([18F]-FP-CIT), and brain glucose metabolism by 2-deoxy-2-[18F]-fluoroglucose ([18F]-FDG) were performed before MPTPp treatment and after 1, 3, and 10 MPTPp administrations, in order to assess relation between dopamine neuron integrity and brain connectivity. The results show that in vivo [18F]-FP-CIT in the dorsal striatum was not modified after the first administration of MPTPp, tended to decrease after 3 administrations, and significantly decreased after 10 MPTPp administrations. Post-mortem immunohistochemical analyses of DAT and tyrosine hydroxylase (TH) in the striatum showed a positive correlation with [18F]-FP-CIT, confirming the validity of repeated MPTPp-treated mice as a model that can reproduce the progressive pathological changes in the early phases of PD. Analysis of [18F]-FDG uptake in several brain areas connected to the striatum showed that metabolic connectivity was progressively disrupted, starting from the first MPTPp administration, and that significant connections between cortical and subcortical regions were lost after 10 MPTPp administrations, suggesting an association between dopamine neuron degeneration and connectivity disruption in this PD model. The results of this study provide a relevant model, where new drugs that can alleviate neurodegeneration in PD could be evaluated preclinically.


Assuntos
Doença de Parkinson , Tropanos , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Dopamina/metabolismo , Probenecid/farmacologia , Probenecid/uso terapêutico , Neurônios Dopaminérgicos/patologia , Fluordesoxiglucose F18/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Degeneração Neural/diagnóstico por imagem , Degeneração Neural/patologia
13.
J Integr Neurosci ; 23(1): 11, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38287859

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disease whose main pathological features are the degeneration of dopamine neurons and deposition of α-synuclein in neurons. At present, the most important treatment strategy for PD is drugs, and one of the most used drugs is levodopa. However, this therapy shows many problems, such as tolerance and long-term effects, so other treatment strategies need to be explored. As a traditional Chinese medicine treatment method with effective and few side effects, electroacupuncture is considered a non-drug therapy. It serves as a novel, promising therapeutic approach for the treatment of PD. In this review, the application and the effects of electroacupuncture on PD have been described. Besides, the underlying molecular mechanisms of electroacupuncture on PD that contribute to protecting dopaminergic neurons and reducing α-synuclein levels have been illustrated, including ① anti-oxidant stress response, ② anti-neuroinflammatory response, ③ up-regulation of neurotrophic factors and reduction of nerve cell apoptosis, ④ down-regulation of endoplasmic reticulum stress and improvement of mitochondrial function, ⑤ improvement of the function of the ubiquitin-proteasome system, ⑥ anti-excitatory toxicity response, ⑦ activation of autophagy, and ⑧ modulation of gut microbiota. Achieving a better understanding of the neuroprotective effects of electroacupuncture on PD will provide a theoretical basis and facilitate the application of electroacupuncture on PD.


Assuntos
Eletroacupuntura , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , alfa-Sinucleína , Fármacos Neuroprotetores/farmacologia , Doenças Neurodegenerativas/patologia , Neurônios Dopaminérgicos/patologia
14.
Int J Biochem Cell Biol ; 168: 106528, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246261

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder that progresses over time and is characterized by preferential reduction of dopaminergic neurons in the substantia nigra. Although the precise mechanisms leading to cell death in neurodegenerative disorders, such as PD, are not fully understood, it is widely accepted that increased oxidative stress may be a prevalent factor contributing to the deterioration of the nigrostriatal dopaminergic fibers in such conditions. Aminochrome, generated from dopamine (DA) metabolism, plays an important role in multiple pathogenic mechanisms associated with PD. Its capacity to induce a gradual reduction in dopaminergic neurons is due to its endogenous neurotoxicity. The formation of aminochrome results in the production of various reactive oxygen species (ROS), including pro-inflammatory factors, superoxide, nitric oxide, and hydroxyl radicals. This, in turn, causes loss of dopaminergic neurons, reducing DA uptake, and reduced numbers and shortened dendrites. Notably, o-quinones, which are more cytotoxic, arise from the oxidation of DA and possess a higher capacity to impede cellular defense mechanisms, thereby resulting in the death of neuronal cells. Aminochrome potentially contributes to the pathophysiology of PD by forming adducts with various proteins. All of the aforementioned effects suggest that aminochrome may play a crucial role in the pathophysiology of PD. Thus, aminochrome may serve as a more relevant preclinical model for PD, facilitating a better understanding of its pathophysiological processes and identification of novel therapeutic strategies aimed at preventing or slowing disease progression.


Assuntos
Indolquinonas , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Indolquinonas/metabolismo , Indolquinonas/uso terapêutico , Doenças Neurodegenerativas/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia
15.
Microsc Res Tech ; 87(2): 373-386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37855309

RESUMO

Since gastrointestinal disorders are early consequences of Parkinson's disease (PD), this disease is clearly not restricted to the central nervous system (CNS), but also significantly affects the enteric nervous system (ENS). Large aggregates of the protein α-synuclein forming Lewy bodies, the prototypical cytopathological marker of this disease, have been observed in enteric nervous plexuses. However, their value in early prognosis is controversial. The Golgi complex (GC) of nigral neurons appears fragmented in Parkinson's disease, a characteristic common in most neurodegenerative diseases. In addition, the distribution and levels of regulatory proteins such as Rabs and SNAREs are altered, suggesting that PD is a membrane traffic-related pathology. Whether the GC of enteric dopaminergic neurons is affected by the disease has not yet been analyzed. In the present study, dopaminergic neurons in colon nervous plexuses behave as nigral neurons in a hemiparkinsonian rat model based on the injection of the toxin 6-OHDA. Their GCs are fragmented, and some regulatory proteins' distribution and expression levels are altered. The putative mechanisms of the transmission of the neurotoxin to the ENS are discussed. Our results support the possibility that GC structure and the level of some proteins, especially syntaxin 5, could be helpful as early indicators of the disease. RESEARCH HIGHLIGHTS: The Golgi complexes of enteric dopaminergic neurons appear fragmented in a Parkinson's disease rat model. Our results support the hypothesis that the Golgi complex structure and levels of Rab1 and syntaxin 5 could be helpful as early indicators of the disease.


Assuntos
Sistema Nervoso Entérico , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Sistema Nervoso Entérico/metabolismo , Sistema Nervoso Entérico/patologia , Complexo de Golgi/patologia , Proteínas Qa-SNARE/metabolismo
16.
Exp Neurol ; 373: 114642, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38056584

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder characteristized by the presence of dyskinesia and the progressive loss of dopaminergic neurons. Although certain drugs can mitigate the symptoms of PD, they are unable to delay the disease progression, and their prolonged use may result in complications. Therefore, there exists an urgent necessity to identify potential agents that can effectively delay PD progression with fewer side effects. Recent research has unveiled that several traditional Chinese medicines (TCM) exhibit neuroprotective properties in various models pertinent to PD. Forsythoside A (FSA), the primary bioactive compound derived from TCM Lianqiao, has undergone extensive research in animal models of Alzheimer's disease and cerebral ischemia. However, the investigation into the impact of FSA on PD is limited in existing research. In this study, we aimed to evaluate the neuroprotective effects of FSA on MPTP-induced PD mouse model. FSA demonstrated significant improvements in the behavioral and neuropathological changes triggered by MPTP in mice. Furthermore, it exerted a suppressive effect on the activations of astrocyte and microglia. Meanwhile, Tandem mass tag (TMT)-based quantitative proteomics of striatal tissue and bioinformatics analysis were performed to elucidate the underlying mechanisms of FSA on PD mouse model. Proteomics demonstrated a total of 68 differentially expressed proteins (DEPs) were identified between HFSA and MPTP groups including 26 upregulated and 42 downregulated. Systematic bioinformatics analysis of the 68 DEPs illustrated that they were predominantly related to estrogen signaling pathway and calcium signaling pathway. The related DEPs (PLCß4, Grm2, HPAC and Cox4i1) expression levels were verified by Western blot. FSA effectively restored the altered expression of the four DEPs induced by MPTP. Summarily, FSA exerted remarkable neuroprotective effects in MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of FSA as a potential treatment for PD.


Assuntos
Medicamentos de Ervas Chinesas , Forsythia , Glicosídeos , Intoxicação por MPTP , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Doença de Parkinson/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/metabolismo , Proteômica , Neurônios Dopaminérgicos/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
17.
Eur J Neurol ; 31(2): e16145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37975799

RESUMO

BACKGROUND AND PURPOSE: The role of GGC repeat expansions within NOTCH2NLC in Parkinson's disease (PD) and the substantia nigra (SN) dopaminergic neuron remains unclear. Here, we profile the NOTCH2NLC GGC repeat expansions in a large cohort of patients with PD. We also investigate the role of GGC repeat expansions within NOTCH2NLC in the dopaminergic neurodegeneration of SN. METHODS: A total of 2,522 patients diagnosed with PD and 1,085 health controls were analyzed for the repeat expansions of NOTCH2NLC by repeat-primed PCR and GC-rich PCR assay. Furthermore, the effects of GGC repeat expansions in NOTCH2NLC on dopaminergic neurons were investigated by using recombinant adeno-associated virus (AAV)-mediated overexpression of NOTCH2NLC with 98 GGC repeats in the SN of mice by stereotactic injection. RESULTS: Four PD pedigrees (4/333, 1.2%) and three sporadic PD patients (3/2189, 0.14%) were identified with pathogenic GGC repeat expansions (larger than 60 GGC repeats) in the NOTCH2NLC gene, while eight PD patients and one healthy control were identified with intermediate GGC repeat expansions ranging from 41 to 60 repeats. No significant difference was observed in the distribution of intermediate NOTCH2NLC GGC repeat expansions between PD cases and controls (Fisher's exact test p-value = 0.29). Skin biopsy showed P62-positive intranuclear NOTCH2NLC-polyGlycine (polyG) inclusions in the skin nerve fibers of patient. Expanded GGC repeats in NOTCH2NLC produced widespread intranuclear and perinuclear polyG inclusions, which led to a severe loss of dopaminergic neurons in the SN. Consistently, polyG inclusions were presented in the SN of EIIa-NOTCH2NLC-(GGC)98 transgenic mice and also led to dopaminergic neuron loss in the SN. CONCLUSIONS: Overall, our findings provide strong evidence that GGC repeat expansions within NOTCH2NLC contribute to the pathogenesis of PD and cause degeneration of nigral dopaminergic neurons.


Assuntos
Doença de Parkinson , Animais , Humanos , Camundongos , Neurônios Dopaminérgicos/patologia , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/patologia , Camundongos Transgênicos , Degeneração Neural/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/patologia , Expansão das Repetições de Trinucleotídeos
18.
Parkinsonism Relat Disord ; 119: 105932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008593

RESUMO

The four features of Parkinson's disease (PD), which also manifests other non-motor symptoms, are bradykinesia, tremor, postural instability, and stiffness. The pathogenic causes of Parkinsonism include Lewy bodies, intracellular protein clumps of αsynuclein, and the degeneration of dopaminergic neurons in the substantia nigra's pars compacta region. The pathophysiology of PD is still poorly understood due to the complexity of the illness. The apoptotic cell death of neurons in PD, however, has been linked to a variety of intracellular mechanisms, according to a wide spectrum of study. The endoplasmic reticulum's stress, decreased levels of neurotrophic factors, oxidative stress, mitochondrial dysfunction, catabolic alterations in dopamine, and decreased activity of tyrosine hydroxylase are some of these causes. The herbicide paraquat has been used in laboratory studies to create a variety of PD pathological features in numerous in-vitro and in-vivo animals. Due to the unique neurotoxicity that paraquat causes, understanding of the pathophysiology of PD has changed. Parkinson's disease (PD) is more likely to develop among people exposed to paraquat over an extended period of time, according to epidemiological studies. Thanks to this paradigm, the hunt for new therapy targets for PD has expanded. In both in-vitro and in-vivo models, the purpose of this study is to summarise the relationship between paraquat exposure and the onset of Parkinson's disease (PD).


Assuntos
Herbicidas , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Animais , Paraquat/toxicidade , Paraquat/metabolismo , Herbicidas/toxicidade , Doença de Parkinson/patologia , Transtornos Parkinsonianos/patologia , Neurônios Dopaminérgicos/patologia
19.
Acta Pharmacol Sin ; 45(1): 52-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37674043

RESUMO

Gut microbiota disturbance and systemic inflammation have been implicated in the degeneration of dopaminergic neurons in Parkinson's disease (PD). How the alteration of gut microbiota results in neuropathological events in PD remains elusive. In this study, we explored whether and how environmental insults caused early neuropathological events in the substantia nigra (SN) of a PD mouse model. Aged (12-month-old) mice were orally administered rotenone (6.25 mg·kg-1·d-1) 5 days per week for 2 months. We demonstrated that oral administration of rotenone to ageing mice was sufficient to establish a PD mouse model and that microglial activation and iron deposition selectively appeared in the SN of the mice prior to loss of motor coordination and dopaminergic neurons, and these events could be fully blocked by microglial elimination with a PLX5622-formulated diet. 16 S rDNA sequencing analysis showed that the gut microbiota in rotenone-treated mice was altered, and mice receiving faecal microbial transplantation (FMT) from ageing mice treated with rotenone for 2 months exhibited the same pathology in the SN. We demonstrated that C-X-C motif chemokine ligand-1 (CXCL1) was an essential molecule, as intravenous injection of CXCL1 mimicked almost all the pathology in serum and SN induced by oral rotenone and FMT. Using metabolomics and transcriptomics analyses, we identified the PPAR pathway as a key pathway involved in rotenone-induced neuronal damage. Inhibition of the PPARγ pathway was consistent in the above models, whereas its activation by linoleic acid (60 mg·kg-1·d-1, i.g. for 1 week) could block these pathological events in mice intravenously injected with CXCL1. Altogether, these results reveal that the altered gut microbiota resulted in neuroinflammation and iron deposition occurring early in the SN of ageing mice with oral administration of rotenone, much earlier than motor symptoms and dopaminergic neuron loss. We found that CXCL1 plays a crucial role in this process, possibly via PPARγ signalling inhibition. This study may pave the way for understanding the "brain-gut-microbiota" molecular regulatory networks in PD pathogenesis. The aged C57BL/6 male mice with rotenone intragastric administration showed altered gut microbiota, which caused systemic inflammation, PPARγ signalling inhibition and neuroinflammation, brain iron deposition and ferroptosis, and eventually dopaminergic neurodegeneration in PD.


Assuntos
Microbioma Gastrointestinal , Doença de Parkinson , Camundongos , Animais , Masculino , Rotenona/toxicidade , Doenças Neuroinflamatórias , PPAR gama , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia , Substância Negra/patologia , Neurônios Dopaminérgicos/patologia , Inflamação/patologia , Ferro , Modelos Animais de Doenças
20.
J Ethnopharmacol ; 321: 117292, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806537

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine views kidney shortage as a significant contributor to the aetiology of Parkinson's disease (PD), a neurodegenerative condition that is closely linked to aging. In clinical, patients with Parkinson's disease are often treated with Testudinis Carapax et Plastrum (Plastrum Testudinis, PT), a traditional Chinese medication that tonifies the kidney. Previous research has demonstrated that ethyl stearate (PubChem CID: 8122), an active component of Plastrum Testudinis Extracted with ethyl acetate (PTE), may encourage neural stem cells (NSCs) development into dopaminergic (DAergic) neurons. However, the effectiveness and mechanism of cotransplantation of ethyl stearate and NSCs in treating PD model rats still require further investigation. AIM OF THE STUDY: PD is a neurodegenerative condition marked by the loss and degradation of dopaminergic neurons in the substantia nigra of the midbrain. Synaptic damage is also a critical pathology in PD. Because of their self-renewal, minimal immunogenicity, and capacity to differentiate into dopaminergic (DAergic) neurons, NSCs are a prospective treatment option for Parkinson's disease cell transplantation therapy. However, encouraging transplanted NSCs to differentiate into dopaminergic neurons and enhancing synaptic plasticity in vivo remains a significant challenge in improving the efficacy of NSCs transplantation for PD. This investigation seeks to examine the efficacy of cotransplantation of NSCs and ethyl stearate in PD model rats and its mechanism related to synaptic plasticity. MATERIALS AND METHODS: On 6-hydroxydopamine-induced PD model rats, we performed NSCs transplantation therapy and cotransplantation therapy involving ethyl stearate and NSCs. Rotating behavior induced by apomorphine (APO) and pole climbing tests were used to evaluate behavioral changes. Using a variety of methods, including Western blotting (WB), immunofluorescence analysis, enzyme-linked immunosorbent assay, and quantitative real-time polymerase chain reaction (qRT-PCR), we examined the function and potential molecular mechanisms of ethyl stearate in combined NSCs transplantation therapy. RESULTS: In the rat PD model, cotransplantation of ethyl stearate with NSCs dramatically reduced motor dysfunction, restored TH protein levels, and boosted dopamine levels in the striatum, according to our findings. Furthermore, the expression levels of SYN1 and PSD95, markers of synaptic plasticity, and BDNF, closely related to synaptic plasticity, were significantly increased. Cotransplantation with ethyl stearate and NSCs also increased the expression levels of Dopamine Receptor D1 (Drd1), an important receptor in the dopamine neural circuit, accompanied by an increase in MMP9 levels, ERK1/2 phosphorylation levels, and c-fos protein levels. CONCLUSIONS: According to the results of our investigation, cotransplantation of ethyl stearate and NSCs significantly improves the condition of PD model rats. We found that cotransplantation of ethyl stearate and NSCs may promote the expression of MMP9 by regulating the Drd1-ERK-AP-1 pathway, thus improving synaptic plasticity after NSCs transplantation. These findings provide new experimental support for the treatment of PD with the kidney tonifying Chinese medicine Plastrum Testudinis and suggest a potential therapeutic strategy for PD based on cotransplantation therapy.


Assuntos
Células-Tronco Neurais , Doença de Parkinson , Humanos , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Fator de Transcrição AP-1/metabolismo , Sistema de Sinalização das MAP Quinases , Ratos Sprague-Dawley , Células-Tronco Neurais/metabolismo , Neurônios Dopaminérgicos/patologia , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...